
Interactive Programmatic Labeling for Weak Supervision
Benjamin Cohen-Wang

Stanford University
Stanford, CA

bencw@stanford.edu

Stephen Mussmann
Stanford University

Stanford, CA
mussmann@stanford.edu

Alex Ratner
Stanford University

Stanford, CA
ajratner@stanford.edu

Chris Ré
Stanford University

Stanford, CA
chrismre@stanford.edu

ABSTRACT
The standard supervised machine learning pipeline involves label-
ing individual training data points, which is often prohibitively slow
and expensive. New programmatic or weak supervision approaches
expedite this process by having users instead write labeling func-
tions, simple rules or other heuristic functions that label subsets of
a dataset. While these types of programmatic labeling approaches
can provide significant advantages over labeling training sets by
hand, there is usually little formal structure or guidance for how
these labeling functions are created by users. We perform an initial
exploration of processes through which users can be guided by
asking them to write labeling functions over specifically-chosen
subsets of the data. This can be viewed as a new form of active learn-
ing—a traditional technique wherein data points are intelligently
chosen for labeling—applied at the labeling function level. We show
in synthetic and real-world experiments how two simple labeling
function acquisition strategies outperform a random baseline. In
our real-world experiment we observe a 1-2% increase in accuracy
after the first 100 labeling functions when using our acquisition
strategies, which corresponds to a 2× reduction in the amount of
data required to achieve a fixed accuracy.

KEYWORDS
data programming, labeling functions, interactive learning
ACM Reference Format:
Benjamin Cohen-Wang, Stephen Mussmann, Alex Ratner, and Chris Ré.
2019. Interactive Programmatic Labeling for Weak Supervision. In Data
Collection, Curation, and Labeling for Mining and Learning Workshop at KDD
’19, August 04–08, 2019, Anchorage, AK. ACM, New York, NY, USA, 5 pages.

1 INTRODUCTION
One of the key bottlenecks in modern machine learning is the cost
of labeled data. The standard supervised pipeline involves labeling
individual data points via experts or crowd-sourcing which can
be expensive or completely prohibitive, for example when data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Workshop at KDD ’19, August 04–08, 2019, Anchorage, AK
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

requires expertise to label, cannot be shipped out of an organiza-
tion, or is part of a modeling task that frequently changes. Data
programming [Ratner et al. 2016] expedites this process by letting
experts write labeling functions, easily computable rules or heuris-
tic functions that can automatically label subsets of a dataset. Data
programming is an example of a broader trend of programmatic
or weak supervision approaches wherein user input is solicited in
higher-level, and often noisier ways, many of which can be ex-
pressed as labeling functions.

Work around data programming has focused primarily on mod-
eling or aggregating the labeling functions [Bach et al. 2017; Ratner
et al. 2017, 2018b; Varma et al. 2017, 2019] to infer the true label.
However, guiding users on how to write labeling functions, or in-
telligently soliciting labeling functions from them, has largely not
been studied. Existing approaches [Hancock et al. 2018; Varma and
Ré 2018] explore methods for auto-generating simple labeling func-
tions, but largely do not explore how to potentially guide a user in
writing labeling functions.

In this work, we take a step back and examine how to prompt
the user with specifically-chosen data in order to guide the labeling
functions that they write. In our experience working with open
source users of data programming, we have observed that users
often look at data samples–for example, randomly sample subsets of
an unlabeled dataset, or samples based on error analysis of a model–
in order to come up with ideas for labeling functions. Rather than
expecting the user to come up with a labeling function based on a
random sample of data, or unprompted by any data, we propose
intelligently selecting subsets of unlabeled data to show to the user,
thus prompting them to write a labeling function. We view this as a
new functional type of active learning [Settles 2012], where instead
of intelligently selecting individual data points to be labeled, as in
traditional active learning, we intelligently select subsets of data to
be programmatically labeled.

For our experiments we model the problem with a large number
of labeling functions that are unknown to the system, but can be
queried in the following way: the system provides a data point
and the human expert returns a labeling function that correctly
classifies the given data point. We show in synthetic and real-world
experiments how two simple labeling function acquisition strategies
outperform a random baseline.



Workshop at KDD ’19, August 04–08, 2019, Anchorage, AK Cohen-Wang, Mussmann, Ratner, Ré

2 BACKGROUND
The data programming pipeline consists of the following three
steps.

(1) Collect noisy labeling functions from the human-expert,
which for each data point may either make a prediction
or abstain.

(2) Learn an implicit generative model between labeling func-
tion outputs and the unobserved true labels that “generate"
them.We use thismodel to reweight and combine the outputs
of the labeling functions, which may overlap and disagree.

(3) Train a noise-aware discriminative end model with the ag-
gregated soft labels from the generative model, and use it to
make final predictions for each data point.

In this work we seek to optimize the first step of this pipeline,
and use data programming engine from Snorkel MeTaL [Ratner
et al. 2018a] for the latter two steps.

3 METHOD
We propose two basic strategies for selecting data points to show
to the human expert: (1) select data points where the current la-
beling functions abstain most and (2) select data points where the
current labeling functions disagree most. Our baseline is choosing
random points which is standard in open source frameworks for
data programming for collecting labeling functions [Ratner et al.
2017].

In the abstain-based strategy, we simply query the data point
for which the number of current labeling functions that abstain is
maximized. In the frequent case where multiple data points tie for
the most abstentions, one of these data points is selected randomly.
Intuitively this strategy promotes obtainingmore information about
data points which we currently do not know much about. This
strategy often selects data points with no predictions, as coverage
(the fraction of data points with at least one prediction) rarely
reaches one.

For the disagreement-based strategy, we first define the agree-
ment of our labeling functions on some data point x as

��∑j λj (x)
��

where λj represents the j’th labeling function and outputs 1 for
positive labels, -1 for negative labels, and 0 for abstains (for simplic-
ity of exposition, we consider binary classification problems, but
our approach could be easily extended to multiclass settings). At
each step we select the data point to show the human expert from
the data points where agreement is equal to the minimum agree-
ment across the dataset, again breaking ties by choosing one point
randomly. In most cases, this means that the data point selected
currently has no non-abstain predictions or has equally many posi-
tive and negative votes. As points are selected uniformly in case
of ties in disagreement, this strategy tends to select more points
with no predictions early on, and more points with tied positive
and negative votes as coverage increases.

4 EXPERIMENTS
4.1 Synthetic Data Experiments
Our synthetic experiments are intended to measure the perfor-
mance of our two strategies compared to random on differently
structured datasets. The synthetic datasets we generate are binary

classification problems with 10,000 data points and perfectly bal-
anced classes. To simulate the human expert for these experiments,
we define a large pool of possible labeling functions that each tend
to label certain areas or partitions of the data, based on our our
observations of common patterns by which human experts write
labeling functions [Ratner et al. 2017]. We divide the data into p
equally-sized partitions, and assign L/p labeling functions to each
partition (where L = 4000 is the total number of labeling functions)
such that each labeling function primarily fires on data points
within its assigned partition. For each query, the simulated human
expert randomly select one labeling function from the pool which
correctly predicts on the given data point.

We parameterize the labeling function behavior of our synthetic
dataset as follows, to simulate the noisy labeling performance of
user-written labeling functions [Ratner et al. 2017]. We assign to
each labeling function an inside fire rate (IF), an outside fire rate
(OF), a false fire rate (FF), and a class. The inside and outside fire
rates are the fraction of the data points within the labeling func-
tion’s partition and outside of the labeling function’s partition,
respectively, on which the labeling function fires, allowing us to
control the degree to which labeling functions label in tightly cor-
related clusters (i.e., in their partitions). We randomly select data
points according to these rates and refer to these data points as the
region of the labeling function. The labeling function fires on every
data point of its class in its region, and (incorrectly) fires on data
points of the opposite class in its region at its false fire rate. Labeling
functions are randomly assigned their class such that exactly half
of the labeling functions assigned to each partition have positive
class, and the other half have negative class. Letting λj denote the
j’th labeling function, Pj denote the partition λj is assigned to and
c j denote the class of λj , the probability that point x belongs to the
region Rj of λj is

Pr[x ∈ Rj ] =
{
IF if x ∈ Pj

OF otherwise

and the probability that λj fires on x is

Pr[λj (x) = c j ] = Pr[x ∈ Rj ] ·
{
1 if c(x) = c j
FF otherwise

Tomeasure the effects of differently structured data on our methods’
performances we vary our parameters in three ways. First, we vary
labeling function accuracy by changing the false fire rates while
keeping the inside fire rates fixed at 1.0, the outside fire rates at
0.0, and the number of partitions fixed at p = 20 (Figure 1). Second,
we vary the extent to which labeling functions fire within their
assigned partition, which intuitively reflects the degree of clustering
among labeling function predictions, by changing the ratio between
the outside fire rate and inside fire rate while keeping the overall
fire rate (the total fraction of data points each labeling function
fires on) fixed, false fire rates fixed at 0.0, and again the number of
partitions fixed at p = 20 (Figure 2). Finally, we vary the number
of partitions p while fixing false fire rates at 0.0, inside fire rates at
1.0, and false fire rates at 0.0 (Figure 3).

Figures 1, 2, and 3 show the accuracies of the majority vote of the
collective labeling functions after each query for the abstain-based,
disagreement-based, and random data point selection strategies on



Interactive Programmatic Labeling for Weak Supervision Workshop at KDD ’19, August 04–08, 2019, Anchorage, AK

datasets with different parameter values as described above. These
results are averaged over 50 trials. Notice that in all three plots, the
blue line represents the “ideal” case where inside fire rates are 1.0,
outside fire rates are 0.0, false fire rates are 0.0 and p = 20.

4.2 Real Data Experiments
For our real-world dataset experiments we used the Amazon review
data from [He and McAuley 2016], which consists of text reviews of
Amazon products and integer ratings between one and five inclu-
sive associated with each review. The data includes reviews about
different categories of products such as “Home and Kitchen”, “Elec-
tronics”, “Books” and “Apps for Android”. To construct our binary
classification dataset, we choose 500 random reviews with rating
one and 500 random reviews with rating five from every category
with at least 100,000 reviews, which amounts to 18 categories total.
The task we define is simply predicting whether the review has
rating one or five (i.e. is positive or negative).

To simulate the human expert for this task, we use the opinion
lexicon from [Hu and Liu 2004] which provides the sentiment (pos-
itive or negative) of 6789 common words and alternative spellings.
When presented with a review, the simulated human expert picks
one random word in the review whose sentiment (according to the
opinion lexicon) is the same as the sentiment of the review and
returns a labeling function of the class of the review which fires
if that word is present, a reasonable proxy for labeling functions
written by real human experts [Ratner et al. 2017]. For instance, for
the review “This was a terrible and disappointing book. The happy
ending doesn’t make sense.” the simulated human expert would
either return a labeling function which labels every review with
the word “terrible” with the negative class and abstains everywhere
else, or the labeling function which behaves the same way for the
word “disappointing”. In the case where no words with sentiment
matching the label of the review are present, the query yields no
labeling function.

To evaluate the labeling functions produced, we run the complete
data programming pipeline from [Ratner et al. 2016] with logistic
regression on the bag-of-words representation of the reviews as
our end model. We query 250 labeling functions and evaluate the
collective labeling functions every 10 queries. We record coverages
and the accuracies of the majority vote, label model, and end model
predictions, and average these results over 50 trials.

As a baseline for the data programming pipeline on this task, we
also train a logistic regression model on the bad-of-words represen-
tation of the reviews on 50 to 250 labeled data points, once again
averaging results over 50 trials. This baseline seems reasonable as
manually labeling some number of reviews should take a human
expert roughly as much time as providing one indicator word for
each review. This means that we can reasonably compare the logis-
tic regression baseline trained on q labeled data points to the data
programming pipeline with q human expert queries. We observe
that the end model for the disagreement-based strategy outper-
forms this baseline by roughly 4% at 50 labeled data points/queries
and continues to outperform the baseline until about 250 labeled
data points/queries. This baseline verifies that data programming
is relevant in this setting, and thus that improving upon the data
programming pipeline is valuable.

Figure 1: Varying false fire rates: The two smart strategies
outperform random for both high and low accuracy labeling
functions.

Figure 2: Varying ratio of outside to inside fire rates: The
two smart strategies have higher performance gain relative
to random for higher degrees of clustering, which performs
the same for different degrees of clustering (random results
overlap in the plot)

Figure 3: Varyingnumber of partitions: All strategies exhibit
similar behaviors for different numbers of partitions.



Workshop at KDD ’19, August 04–08, 2019, Anchorage, AK Cohen-Wang, Mussmann, Ratner, Ré

Figure 4: Accuracies on Amazon review data: Smart strate-
gies have accuracy gain of roughly 1-2% over random, or 2×
increase in data efficiency.

Figure 5: Coverages on Amazon review data: All strategies
have similar coverages throughout.

5 DISCUSSION
In this section we summarize some high-level observations about
performance gains from using our two smarter strategies to query
data points over random, and discuss some potential next steps
in this research direction. We begin by discussing the results of
our synthetic experiments. First, we notice in Figure 1 that the
abstain and disagreement-based strategies outperform random for
both low and high labeling function accuracies. Intuitively, for very
accurate labeling functions performing well involves maximizing
coverage, and for less accurate labeling functions performing well
involves maximizing coverage as well as breaking ties between
existing labeling functions. The abstain-based and disagreement-
based strategies promote these behaviors more so than the random
strategy.

We observe in Figure 2 that the performance gain from the smart
strategies grows with the degree of clustering structure between the
labeling functions, or more generally with the degree of correlation
among labeling functions in where they predict and abstain. This
is because when labeling functions are more correlated with each
other each new labeling function is more likely to be redundant,
which the smarter query strategies are designed to avoid. While
traditional crowdsourcing work often considers a model of uncorre-
lated labelers, in data programming we see that labeling functions
are indeed often very correlated in where they label, corresponding
to different distinct parts of the feature space [Ratner et al. 2016].

Finally, in Figure 3 where we vary the number of partitions we ob-
serve similar relationships between our two strategies and random
but roughly stretched proportionally to the number of partitions.
This is consistent with what we would expect, since the abstain
and disagreement-based strategies simply produce one labeling
function of each class for each partition and the random strategy
randomly collects labeling functions. Letting p be the number of
partitions and q be the number of queries, the expected accuracies
for the strategies according to this behavior are

E[Abstain Strategy Accuracy] = min(1, q2p )

E[Disagreement Strategy Accuracy] = min(1, q2p )

E[Random Strategy Accuracy] = 1 − (1 − 1
2p )

q

On the Amazon review data in Figure 4 we observe that the
abstain and disagreement-based strategies outperform random on
real data with somewhat correlated labeling functions of varying
accuracies. As the coverages of the three strategies are roughly
equal after each query as seen in Figure 5, we expect this improve-
ment derives from the abstain-based strategy correcting aggregate
predictions for data points with few votes, and the disagreement-
based strategy producing labeling functions that break ties between
existing labeling functions. While the improvement we observe
is most consistent in the majority vote of labeling functions, the
label models and end models trained on the labeling functions pro-
duced by the disagreement-based strategy also outperform those
produced by random, particularly for higher number of queries.
We expect the disagreement-based strategy to eventually outper-
form the abstain-based strategy, since as coverage approaches one
without reaching it the data points selected by the abstain-based
strategy are typically outliers.

Next Steps. As follow up work to this initial exploration, we
plan to investigate more sophisticated selection strategies. For ex-
ample, we have not yet explored strategies which depend on the
label or end model predictions, which could provide more fine-
grain information than the individual labeling function votes about
points for which the current labeling functions are insufficient. We
could also experiment with showing the human expert multiple
data points at once, which we have so far avoided since simulat-
ing the labeling function the human expert produces after seeing
multiple points would be difficult. Other important next steps are
to assess performance of smart selection strategies on other real-
world datasets/tasks, and to run experiments involving real human
experts producing the labeling functions.



Interactive Programmatic Labeling for Weak Supervision Workshop at KDD ’19, August 04–08, 2019, Anchorage, AK

REFERENCES
Stephen H Bach, Bryan He, Alexander Ratner, and Christopher Ré. 2017. Learning

the structure of generative models without labeled data. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org, 273–282.

Braden Hancock, Martin Bringmann, Paroma Varma, Percy Liang, Stephanie Wang,
and Christopher Ré. 2018. Training classifiers with natural language explanations.
In Proceedings of the conference. Association for Computational Linguistics. Meeting,
Vol. 2018. NIH Public Access, 1884.

Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Visual Evolution
of Fashion Trends with One-Class Collaborative Filtering. CoRR abs/1602.01585
(2016). arXiv:1602.01585 http://arxiv.org/abs/1602.01585

Minqing Hu and Bing Liu. 2004. Mining and Summarizing Customer Reviews.
In Proceedings of the Tenth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD ’04). ACM, New York, NY, USA, 168–177.
https://doi.org/10.1145/1014052.1014073

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, SenWu, and Christo-
pher Ré. 2017. Snorkel: Rapid training data creation with weak supervision. Pro-
ceedings of the VLDB Endowment 11, 3 (2017), 269–282.

Alex Ratner, Braden Hancock, Jared Dunnmon, Roger Goldman, and Christopher Ré.
2018a. Snorkel MeTaL: Weak Supervision for Multi-Task Learning. In Proceedings of
the Second Workshop on Data Management for End-To-End Machine Learning. ACM,
3.

Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey,
and Christopher Ré. 2018b. Training complex models with multi-task weak super-
vision. arXiv preprint arXiv:1810.02840 (2018).

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher
Ré. 2016. Data programming: Creating large training sets, quickly. In Advances in
neural information processing systems. 3567–3575.

Burr Settles. 2012. Active learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning 6, 1 (2012), 1–114.

Paroma Varma, Bryan D He, Payal Bajaj, Nishith Khandwala, Imon Banerjee, Daniel
Rubin, and Christopher Ré. 2017. Inferring generative model structure with static
analysis. In Advances in neural information processing systems. 240–250.

Paroma Varma and Christopher Ré. 2018. Snuba: automating weak supervision to
label training data. Proceedings of the VLDB Endowment 12, 3 (2018), 223–236.

Paroma Varma, Frederic Sala, Ann He, Alexander Ratner, and Christopher Ré. 2019.
Learning Dependency Structures for Weak Supervision Models. arXiv preprint
arXiv:1903.05844 (2019).

http://arxiv.org/abs/1602.01585
http://arxiv.org/abs/1602.01585
https://doi.org/10.1145/1014052.1014073

	Abstract
	1 Introduction
	2 Background
	3 Method
	4 Experiments
	4.1 Synthetic Data Experiments
	4.2 Real Data Experiments

	5 Discussion
	References

